

 Copyright © 2013 Meriam

Meriam Serial Protocol
Implementation Guide
For M1500 Digital Transmitters

Referenced from Meriam Serial Protocol for MAP-Based
Designs v3.00

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 2

Contents:

Preface ...4

Modular Configurations ..6

Overview ...7

Message Structure ... 8

Communication Protocol .. 8

Terminology..9

Command Format - from “Controller” to Module 11

Header .. 11

Data (Payload) ... 12

Data types used to describe the DATA (or Payload) part of the
message: ... 12

Response Format – from Module to “Controller” 13

CMD_RESET (0x00) ... 15

CMD_GET_SET_INFO (0x02) – constantly adding new CMD3s . 16

Types of information ... 17

CMD_GET_SET_UNITS (0x03) ... 19

CMD_GET_SET_UNITS (0x03) (continued) 20

EPI Pressure Channel Units: ... 21

CMD_GET_MEAS (0x04) ... 23

Command Format - from “Controller” to Module: 23

CMD_GET_MEAS (0x04) (continued) .. 24

CMD_MEAS_SIM_MODE (0x05) ... 26

CMD_FIELD_RECAL (0x06) ... 30

CMD_FIELD_RECAL (0x06) (continued) 34

CMD_GET_SET_RTCLOCK (0x07) ... 37

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 3

CMD_GET_SET_FILTER (0x08) .. 39

CMD_GET_SET_COMM (0x09) ... 41

CMD_GET_SET_COMM (0x09) (continued) 43

General Status... 44

Individual Status ... 46

Individual Status (in Response Data): .. 48

Appendix A ... 50

Module Classes and Types .. 50

Module Default Addresses .. 51

CRC16 Detail: ... 53

Message/Protocol Transmit and Receive Detail 54

Hardware and Firmware Communication Support 55

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 4

Preface
The Modular Architecture Program (now Product) is made up of
the following “Classes” and “Types” of “Modules” which can be
used alone or in combination to make a finished good.

Class Type

Measurement /
Simulation

EPI (pressure), EVI (volt, mA), EIO
(digital IO), EAO (analog out)

Communications / Bridge RS-232/485, USB

Repository / Data logging Repository

Control / User Interface product-specific, M400

Power Supply product-specific, M400

The diagram below illustrates the communication hierarchy for all
classes and types of MAP modules.

Mode 6: Meriam setup/calibration

Mode 5: Meriam Full-Stack (always

Control and Repository)

Mode 4: Short-Stack setup

(via PC app)

Mode 3: Short-Stack

(never Control or Repository)

Mode 2: Reflash firmware mode

(via PC app)

Mode 1: Embedded Instrument

F

U

N

C

T

I

O

N

A

L

I

T

Y

Meriam - full functionality

Short-Stack (two or more
modules connected
directly to one another)

Stand-Alone
Embedded Instrument

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 5

The commands are arranged in a hierarchy or “level” of
functionality. Mode 6 contains the most advanced functions and
features while Mode 1 contains the most basic ones. Additionally,
each mode inherits all the functions from all the modes below it.

This allows a single module (hardware and firmware) to perform as
a stand-alone embedded instrument or be a component of a
Meriam instrument.

Customers have access to Mode 1.

If a given class/type of module does not support a certain
command, an unsupported status will be returned.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 6

Modular Configurations
The following diagrams show how modules can be combined,
from the most basic Embedded Instrument to a Meriam
Instrument (also called Full-Stack).

Embedded Instrument

Short-Stack

Full-Stack (a Meriam Instrument, in this case, a M4xx)

External
Controller

Meas/Sim User or ICB

Externa
Controller

Comm/Bridge
(example RS485)

Meas/Sim Meas/Sim

RS485

ICB

Control/UI Comm/Bridge
(example: USB)

Repository/DL

Meas/Sim
(example: EPI)

Meas/Sim
(example: EVI)

Power Supply

ECB

ICB

DB

USB

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 7

Overview
This document describes the message structure and
communication protocol between a Controller and an Embedded
Instrument (EI) or Short/Full Stack (SS/FS). The Controller is always
a Master and the EI is always a Subordinate when used in stand-
alone, or Embedded Instrument mode.*

An EI supports three hardware communication interfaces via the
20-pin Meriam Comm. Header (MCH):

• I2C – pins 3-4

• UART – pins 15-16

• SPI – pins 15-18

A SS/FS supports several hardware communication interfaces via
the attached comm. board’s connector:

• RS232 – RS232485 comm. board connector

• RS485 – RS232485 comm. board connector

• USB2.0 – USB20 comm. board connector

For consistency and ease of interface, the same message structure
and protocol is supported across ALL hardware interfaces. This
commonality greatly simplifies communication code.

* SS and FS configurations operate both I2C busses in multi-
master mode.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 8

Message Structure
A message consists of two basic parts:

• Header including CRC (fixed at 12 bytes)

• Data (variable length)

The fixed-length Header contains basic information about the
message, including its length and CRC. The Data portion of the
packet (or payload) contains the message-specific, variable-length
data, and extended addressing if applicable.

All data (larger than one byte) is little-endian.

This structure facilitates the use of DMA for message reception
(that is, the firmware design can take full advantage of the
MSP430’s USCI/DMA hardware).

This message structure is valid for I2C, UART, and SPI. Although
the low-level transmit/receive firmware will be unique for each
hardware interface, the message handler will be common.

Communication Protocol
There are two messages types:

• Command

• Response

The Command message is sent from the Controller (the Master) to
the EI or SS/FS (the Subordinate). This Command message evokes
(or solicits) a Response message.

The commands and responses are intentionally very compact to
minimize protocol overhead.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 9

Terminology
Transaction = an exchange of information between a Master and
Subordinate

• The Master transmits a Command Message and reads (SPI) or
receives (UART and I2C internal/external control busses) a
Response Message.

Master = the side that initiates communication

• The Master is not typically able to receive an unsolicited
command message (if there is only one Master, this would be
a protocol violation).

• The Master is not typically able to receive an unsolicited
response message.

Subordinate = the side the responds to communication

• The Subordinate is almost always ready to receive an
unsolicited command message.

• The Subordinate is not typically able to receive an unsolicited
response message.

Message = a complete “packet” of information (control
information and user data (also known as payload) – per
Wikipedia)

• A Message is composed of a fixed-length header and a
variable length data area

• The Master transmits a Command Message. The Subordinate
composes a Response Message

Command Message = a Command Header (CH) followed by
Command Data (CD)

• CH = Command Header – 12 bytes of “command message
description“ info

• CD = Command Data (or Payload) – 0 to 144 bytes of data

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 10

Response Message = a Response Header (RH) followed by
Response Data (RD)

• RH = Response Header – 12 bytes of “response message
description“ info

• RD = Response Data (or Payload) – 0 to 144 bytes of data

Normal Message Addressing = addressing for use within a
Short/Full-Stack

• Source = 1 byte: typically Module address specified in the CH
and RH

• Destination = 1 byte: typically Module address specified in the
CH and RH

Extended Message Addressing = addressing required to
externally access (For example: PC app, and so on) a Short/Full-
Stack, 6 bytes concatenated to the end of the actual data in the
Data (or Payload) area

• Source = 3 bytes: Network, Bridge, and Module address

• Destination = 3 bytes: Network, Bridge, and Module address

A Transaction between a Master and Subordinate must be
completed (that is, closed) before the Master can initiate
another transaction to the same or a different Subordinate.
This is true for both Normal addressing (that is, comm. within the
stack) and Extended addressing (that is, comm. in/out of the stack)
Messages.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 11

Command Format - from “Controller”
to Module

Header
1 PRE1 Preamble1 = 0x80 version 1 = 0x80

2 PRE2 Preamble2 = 0x0? version 1:
0x00 = normal addressing
0x01 = extended addressing
note: 0x01 may map to 0x03 internally,
however, the user will only specify a 0x00
or 0x01

3 LEN Length = 0x?? length of DATA area
note: does NOT include extended
addressing

4 SADD Srce Address = 0x?? source (transmitter) address

5 DADD Dest Address = 0x?? destination (receiver) address
note: these addresses describe the current
link/hop

6 CMD1 Command1 = 0x?? main command

7 CMD2 Command2 = 0x?? command argument

8 CMD3 Command3 = 0x?? command argument

9 STAT Status = 0x00-0xFF version 1 = repurposed to command
attribute
 suppress response (SR) bits:
 1xxx xxxx = SRc = for this command
 x1xx xxxx = SRf = set SRc bit on
 forwarded command
note: SRf is only processed by comm.
boards

10 CNTR Counter = 0x00 version 1 = spare

11 CRCL CRC16 (LSB) = 0x00-0xFF CRC16 of above 10 bytes and Data area

12 CRCH CRC16 (MSB) = 0x00-0xFF (that is, PRE1 thru CNTR and DATA area,
inclusive)

*** Unused bytes should be set to 0x00 ***

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 12

Data (Payload)
13-n DATA Data = command-specific, variable-length data

 plus optional extended addressing, which describes the complete address of the
command originator and the complete address of the intended command recipient

n+1 SNET SrceNetwork = 0x00-0xFF source network address

n+2 SBRI SrceBridge = 0x10-0x70 source bridge address

n+3 SMOD SrceModule = 0x10-0x70 source module address

n+4 DNET DestNetwork = 0x00-0xFF destination network address

n+5 DBRI DestBridge = 0x10-0x70 destination bridge address

n+6 DMOD DestModule = 0x10-0x70 destination module address

*** Unused bytes (within Length) should be set to 0x00 ***

Data types used to describe the DATA (or
Payload) part of the message:

U8 (1 Byte) = unsigned 8-bit

S8 (1 Byte) = signed 8-bit

U16 (2 Bytes) = unsigned 16-bit, little-endian

S16 (2 Bytes) = signed 16-bit, little-endian

U32 (4 Bytes) = unsigned 32-bit, little-endian

S32 (4 Bytes) = signed 32-bit, little-endian

F32 (4 Bytes) = 32-bit IEEE float, little-endian

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 13

Response Format – from Module to “Controller”

Header
1 PRE1 Preamble1 = 0x40 version 1 = 0x40

2 PRE2 Preamble2 = 0x0? version 1:
0x00 = normal addressing
0x01 = extended addressing

3 LEN Length = 0x?? length of DATA area
note: does NOT include extended
addressing

4 SADD Srce Address = 0x?? source (transmitter) address

5 DADD Dest Address = 0x?? destination (receiver) address
note: these addresses describe the current
link/hop

6 CMD1 Command1 = 0x?? echoed

7 CMD2 Command2 = 0x?? echoed

8 CMD3 Command3 = 0x?? echoed (or result)

9 STAT Status = 0x00 general status, see status page

10 CNTR Counter = 0x00 version 1 = spare

11 CRCL CRC16 (LSB) = 0x00-0xFF CRC16 of above 10 bytes and Data area

12 CRCH CRC16 (MSB) = 0x00-0xFF (that is, PRE1 thru CNTR and DATA area,
inclusive)

Data (Payload)
13-n DATA Data = command-specific, variable-length data

 plus optional extended addressing, which describes the complete address of the
response originator (that is, intended command recipient) and the complete
address of the response recipient (that is, command originator)

n+1 SNET SrceNetwork = 0x00-0xFF source network address

n+2 SBRI SrceBridge = 0x10-0x70 source bridge address

n+3 SMOD SrceModule = 0x10-0x70 source module address

n+4 DNET DestNetwork = 0x00-0xFF destination network address

n+5 DBRI DestBridge = 0x10-0x70 destination bridge address

n+6 DMOD DestModule = 0x10-0x70 destination module address

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 14

What Follows

The next several pages describe the currently supported user commands
and their responses.

Only the command-specific header and data bytes are shown. The rest of
the header must be populated properly (preamble, addressing, CRC, and
so on) as shown on the preceding pages. Unused bytes within the
message should be zeroed.

A support file, EIProtocol.h, contains defines and data structures/unions
that support the following commands (see Appendix A).

Contact Meriam support to obtain a copy of the latest version.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 15

CMD_RESET (0x00)

Command Format - from “Controller” to Module:
LEN Length = 0x00 length of DATA area

CMD1 Command1 = 0x00

CMD2 Command2 = 0x00-0xFF Types of reset:

 0x00 = complete reset, soft reboot

 0x01 = complete reset, hard reboot future

 0x02 = comm. buss resets??? future

 0x10 = abort current command future

 0x11 = abort current action, return to
measure

future

Response Format – from Module to “Controller”:
LEN Length = 0x01 length of DATA area

CMD1 Command1 = 0x00 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status* = 0x00-0xFF individual status, see status page

 * may not be present for soft reboot (length will be 0 if not present)

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 16

CMD_GET_SET_INFO (0x02) – constantly
adding new CMD3s

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x02

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with attributes:

 xxx1 xxxx = spare

 xx1x xxxx = spare

 x1xx xxxx = error (memory = 0) error is
future

 1xxx xxxx = set (get = 0)

 Lower nibble not bit-encoded:

 xxxx 0000 = normal (EI) list

 xxxx 1111 = legacy memory list future

CMD3 Command3 = 0x00-0xFF reference number

U8 Data Bytes = data for a set (write)

Response Format – from Module to “Controller”:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x02 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status* = 0x00-0xFF individual status, see status page

U8 Data Bytes = data for a get (read)

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 17

Types of information

Normal Reference:

Memory

0x00 = main summary (get): SNs, class, type, addresses, and so on.

0x40 = sensor summary (get): replaces 0x11/0x21, all channels and modes
supported

0x80 = main and sensors summary (get): module and main sensor summary

0xC0 = user defined area (get/set): product description

0xC1 = user defined area (get/set): product tag name and asset number

0xC2-0xCF reserved for user (customer) data

ADD HEALTH/DIAGNOSTICS INFORMATION HERE…

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 18

Example structure for 0x80 (always refer to EIProtocol.h for
up-to-date structures):
 struct

 { //main EE info

 Byte stat; //individual status, see status page

 Byte pad; //spare to align on Word boundary

 char szStackSN[12]; //stack serial number (for final product)

 char szModuleSN[12]; //module serial number (for module)

 Word wProductID; //product ID number

 char szProductRev[8]; //product revision

 char szProductName[32]; //product name

 struct //sensor EE(s) info

 { //all data here in currently selected eng. units

 char szSensorSN[12]; //sensor serial number (for sensor)

 float fLSL; //lower sensor limit

 float fUSL; //upper sensor limit

 char shorttext[7]; //short units text string (example "inW20C")

 //to 6 characters + NULL, left-justified

 Byte bUnits; //units index

 } chan[2];

 } r80; //response r80, 124 bytes

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 19

CMD_GET_SET_UNITS (0x03)

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x03

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with channel:

 xxx1 xxxx = channel 1

 EPI (Pressure): measure P1 pressure

 EVI (Volt Amp): meas/sim volts

 PS (M400): meas/sim HV volts

 xx1x xxxx = channel 2

 EPI (Pressure): measure P2 pressure

 EVI (Volt Amp): meas/sim milliamps

 PS (M400): meas Bus Vcc volts

 x1xx xxxx = channel 3

 ExI (that is, all): spare

 PS (M400): meas Battery percent charge

 1xxx xxxx = channel 4:

 ExI (that is, all): measure internal temperature

 Lower nibble not bit-encoded:

 xxxx 0000 = get current engineering unit(s) for
the specified channel(s)

 xxxx 0001 = set specified engineering unit(s) for
the specified channel(s)

 xxxx 0010 = read specified engineering unit(s)
data for the specified channel(s)

 notes:

 • the last option (read) can be used to enumerate
a complete list of all supported engineering
units, one at a time, (via repeated calls) without
changing any settings

 • this command is mode-dependent; it will
get/set/read the units for the active mode (that
is, meas or sim)

U8 Unit* = 0x00-0xFF value depends upon Command2, for:
xxxx 0000, U8 is a don’t care
xxxx 0001, U8 specifies engineering unit index to set
xxxx 0010, U8 specifies engineering unit index
 to read

* repeated in groups of 1 byte based upon the number of channels selected in
 CMD2

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 20

CMD_GET_SET_UNITS (0x03) (continued)

Response Format – from Module to “Controller”:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x03 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status** = 0x00-0xFF individual status, see status page

U8 Unit** = 0x00-0xFF for get

 • the current unit for the specified channel

 for set:

 • if specified unit was valid, the specified unit

 • if specified unit was invalid, the current unit

 for read:

 • if specified unit was valid, the specified unit

 • if specified unit was invalid, the Nth (last) unit

S8 Max. LOD** = 0x00-0xFF worst-case digits to left of decimal

S8 Max.
AROD**

= 0x00-0xFF worst-case digits to right of decimal to show
accuracy

S8 Max.
RROD**

= 0x00-0xFF worst-case digits to right of decimal to show
precision

 notes:

 • the above xODs are worst-case/greatest for the
unit

 • if either ROD is < 0, scientific notation is
required to display data correctly

U8 Spare** = 0x00 spare to align to Word boundary

U8 Unit Text** = 0x00-0xFF short units text string (For example: “inW20C”)

U8 | ** = 0x00-0xFF | up to 6 characters + NULL, left-justified

U8 | ** = 0x00-0xFF |

U8 | ** = 0x00-0xFF |

U8 | ** = 0x00-0xFF |

U8 | ** = 0x00-0xFF |

U8 | ** = 0x00 | always a NULL

U8 Spare** = 0x00 spare to align to Word boundary

F32 Conversion** = conversion coefficient (PSI to specified engineering
unit)

** repeated in groups of 18 bytes based upon the number of
 channels selected in CMD2

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 21

Example

To …

 Controller--->EI:

 EI--->Controller:

EPI Pressure Channel Units:
0 PSI 17 mHg0C
1 inW20C 18 cmHg0C
2 inW4C 19 mmHg0C
3 inW60F 20 torr
4 ftW20C 21 kg/cm2
5 ftW4C 22 kg/m2
6 ftW60F 23 Pa
7 mmW20C 24 hPa
8 mmW4C 25 kPa
9 mmW60F 26 MPa
10 cmW20C 27 Bar
11 cmW4C 28 mBar
12 cmW60F 29 ATM
13 mW20C 30 oz/in2
14 mW4C 31 lb/ft2
15 mW60F 32 User 1*
16 inHg0C 33 User 2*

* measurements are returned in PSI (unless sensor EE factory
 programmed otherwise), conversions must be done outside
 of EPI

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 22

EVI Volt Channel and Current Channel Units:

EAO Volt Channel and Current Channel Units:

0 mA DC
1 V DC

MAP Internal Temperature Channel Units:

0 °F
1 °C
2 K
3 °R

Note: future versions may include Universal Units (that is, %)
and/or Standard Units (that is, HART or FCINTF, which are a subset
of the above units)

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 23

CMD_GET_MEAS (0x04)

Command Format - from “Controller” to Module:
LEN Length = 0x00 length of DATA area

CMD1 Command1 = 0x04

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with channel:

 xxx1 xxxx = channel 1

 EPI (Pressure): measure P1 pressure

 EVI (Volt Amp): meas/sim volts

 PS (M400): meas/sim HV volts

 xx1x xxxx = channel 2

 EPI (Pressure): measure P2 pressure

 EVI (Volt Amp): meas/sim milliamps

 PS (M400): meas Bus Vcc volts

 x1xx xxxx = channel 3

 ExI (that is, all): spare

 PS (M400): meas Battery percent charge

 1xxx xxxx = channel 4:

 ExI (that is, all): measure internal temperature

 Lower nibble not bit-encoded:

 xxxx 0000 = gets measurement float* for
specified channel(s)

 xxxx 0001 = same as 0000, but also resets min
and max floats (to the current
measurement) for specified
channel(s)

 xxxx 0010 = same as 0000, but also gets min and
max floats for specified channel(s)

 xxxx 0011 = spare

 xxxx 0100 = gets 2 measurement percentage
floats*, one relative to LSL/USL and
one relative to LRV/URV for
specified channel(s)

 note:

 • this command is mode-dependent; it will get
the measurements for the active mode (that is,
meas or sim)

* measurement may be filtered/damped, depending on respective user settings

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 24

CMD_GET_MEAS (0x04) (continued)

Response Format – from Module to “Controller”:
LEN Length = 0x00 length of DATA area

CMD1 Command1 = 0x04 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

DATA depends upon lower nibble of CMD2 as shown
next

CMD2 = xxxx0000, xxxx0001

U8 Status = 0x00-0xFF individual status, see status page

S8 AROD = 0x00-0xFF meas-specific digits to right of decimal to show
accuracy

S8 RROD = 0x00-0xFF meas-specific digits to right of decimal to show
precision

 note:

 • the above xODs are signed Bytes
• the above xODs are actual/meas-specific for

the unit
• if either ROD is < 0, scientific notation is

required to display data correctly

U8 Spare = 0x00 spare to align Float on Word boundary

F32 Measurement = measurement data, 32-bit float in little-endian

CMD2 = xxxx0010

U8 Status = 0x00-0xFF individual status, see status page

S8 AROD = 0x00-0xFF meas-specific digits to right of decimal to show
accuracy

S8 RROD = 0x00-0xFF meas-specific digits to right of decimal to show
precision

U8 Spare = 0x00 spare to align Float on Word boundary

F32 Measurement = measurement data, 32-bit float in little-endian

F32 Minimum = minimum meas data, 32-bit float in little-endian

F32 Maximum = maximum meas data, 32-bit float in little-endian

CMD2 = xxxx0011

spare

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 25

CMD2 = xxxx0100

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

F32 Percent
Limits

= percent relative to LSL/USL, 32-bit float in little-
endian

F32 Percent
Range

= percent relative to LRV/URV, 32-bit float in little-
endian

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 26

CMD_MEAS_SIM_MODE (0x05)

Command Format - from “Controller” to Module:
LEN Length = 0x08 length of DATA area

CMD1 Command1 = 0x05 echoed

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with
attributes:

 xxx1 xxxx = spare
xx1x xxxx = spare
x1xx xxxx = spare
1xxx xxxx = set (get = 0)

 Lower nibble not bit-encoded:

 xxxx 0000 = default

U8 Mode* = 0x00-0xFF the desired measure/simulation mode

U8 Unit* = 0x00-0xFF the desired engineering unit (for mode) future

F32 Simulation* = the desired simulation value (for mode)

U8 Spare* = 0x00 spare

U8 Spare* = 0x00 spare

* these parameters are not used (and need not be present) for get

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 27

Response Format – from Module to “Controller”:
LEN Length = 0x0A length of DATA area

CMD1 Command1 = 0x05 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Mode = 0x00-0xFF the current measure/simulation mode

U8 Unit = 0x00-0xFF the current engineering unit (for mode)

F32 Simulation = the current measurement/simulation value (for
mode)

U8 State = 0x00-0xFF the current hardware state of the power source

U8 Spare = 0x00 spare

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 28

Measure/Simulation Modes by Module:

EVI

0x00 = measure mode: voltage in V*

0x10 = measure mode: current in mA*

0x20 = measure mode: current in mA* (for factory calibration only)

0x30 = simulation mode: source 24V loop* (may be different than precision
source V)

0x40 = simulation mode: source voltage in V*

0x50 = simulation mode: source current in mA*

0x60 = simulation mode: sink current in mA*

* the engineering units cannot be changed for any of these modes gaps left for
future use (ranges, and so on)

EAO

0x40 = simulation mode: source voltage in V* (4-wire, dedicated power)

0x60 = simulation mode: sink current in mA* (4-wire, dedicated power)

0x70 = simulation mode: sink current in mA* (2-wire, loop power)

* the engineering units cannot be changed for any of these modes gaps left for
future use (ranges, and so on)

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 29

M4xx Power Supply

0x00 = high voltage off (see State for cause, cannot measure or source in this
Mode)

0x40 = high voltage on (Vbat <= HV <= 25.5V, see State for functionality)

The Mode is supplemented by State, to identify and correct various problems.

State (entirely bit-encoded)

Upper nibble is High Voltage State

1xxx xxxx = unused

x1xx xxxx = on (0 = off)

xx1x xxxx = tripped, over-current (0 = not tripped)

xxx1 xxxx = no power available (0 = controlled by command)

Lower nibble is Low Voltage State

xxxx 1xxx = sufficient power to source (0 = insufficient power to source)

xxxx x1xx = sufficient power to measure (0 = insufficient power to measure)

xxxx xx1x = internal power available, isolated (0 = no internal power)

xxxx xxx1 = external power connected, non-isolated (0 = no external power)

This command is not supported on measure-only modules.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 30

CMD_FIELD_RECAL (0x06)

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x06

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with channel:

 xxx1 xxxx = channel 1

 EPI (Pressure): measure P1 pressure

 EVI (Volt Amp): measure volts

 xx1x xxxx = channel 2

 EPI (Pressure): measure P2 pressure

 EVI (Volt Amp): measure milliamps

 x1xx xxxx = channel 3

 ExI (that is, all): spare

 1xxx xxxx = channel 4:

 ExI (that is, all): measure internal temperature

 notes:

 • only one channel supported at a time, except
for zero

 Lower nibble not bit-encoded:

 xxxx 0000 = zero, offset, tare the
offset/tare=future specified
channel(s)

 xxxx 0001 = restore factory defaults

 xxxx 0010 = get supported field recal procedures
future

 xxxx 0011 = start field recal

 xxxx 0100 = save point

 xxxx 0101 = next point

 xxxx 0110 = finish field recal

 xxxx 0111 = state field recal

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 31

DATA depends upon lower nibble of CMD2 as shown next

CMD2 = xxxx0000

CMD3 Command3 = 0x00-0xFF the operation to perform on the specified
channel(s):

 0x00 = zero

 0x01 = offset to specified value (Meas = Value)

 0x02 = offset by specified value (Meas = Meas +
Value)

 0x03 = tare to specified value (Meas = Value)

 0x04 = tare by specified value (Meas = Meas +
Value)

 0x10 = zero limits future

 0x11 = offset limits future

 0x12 = tare limits future

 notes:

 • zero and offset are non-volatile

 • tare is volatile (that is, reset to off on power
on)

 0x60 = EVI zero macro (zeros all 6 modes)

 notes:

 • the electrical inputs must be shorted for the
duration of this operation

 • this is a special “macro” command for the EVI
only

 • this operation takes several seconds to
complete

F32 Value* = value in currently selected user engineering units

* repeated in groups of 1 float based upon the number of channels selected in
 CMD2 this parameter is not used (and need not be present) for zero
 (or EVI zero)

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 32

CMD2 = xxxx0001

CMD3 Command3 = 0x00-0xFF Upper nibble spare:

 Lower nibble not bit-encoded:

 xxxx 0000 = restore all points and field-recal

 xxxx 0001 = restore all points

 xxxx 0010 = restore field-recal

NO DATA (just command header)

CMD2 = xxxx0010

Future…

CMD2 = xxxx0011(start field recal)

U8 Recal Number = 0x00-0xFF field recal number (from “get supported FR”)

U8 View/Perform = 0x00-0xFF 0x00 = View recal, 0x01 = Perform recal

CMD2 = xxxx0100 (save point)

U8 Recal Number = 0x00-0xFF must be same value used in “start FR”

U8 View/Perform = 0x00-0xFF must be same value used in “start FR”

U8 Cur Point = 0x00-0xFF must be same value returned from “start
FR”/“next point”

U8 Num Points = 0x00-0xFF must be same value returned from “start
FR”/“next point”

F32 Apply Point* = for View: the new Apply Point
for Recal: the actual “applied” point

* exactly the Apply Point or between the Min/Max Apply Points,
 returned from “start FR”/“next point”

• for View and Recal: if attempting to save a point outside Min/Max Apply
Points, the EI response will return an error

• for Recal: if attempting to save a point outside the Max Error (|applied -
actual|), the EI response will return an error

• all F32 (that is, “measurement”) data is in currently selected user engineering
units

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 33

CMD2 = xxxx0101 (next point)

U8 Recal Number = 0x00-0xFF must be same value used in “start FR”

U8 View/Perform = 0x00-0xFF must be same value used in “start FR”

U8 Cur Point = 0x00-0xFF must be same value returned from “start
FR”/“next point”

U8 Num Points = 0x00-0xFF must be same value returned from “start
FR”/“next point”

CMD2 = xxxx0110 (finish field recal)

U8 Recal Number = 0x00-0xFF not used, references current field recal

U8 View/Perform = 0x00-0xFF not used, references current field recal

U8 Abort/Save = 0x00-0xFF 0x00 = Abort recal, 0x01 = Save recal

U8 Disable/Enable = 0x00-0xFF 0x00 = Disable recal, 0x01 = Enable recal

CMD2 = xxxx0111 (state field recal)

U8 Recal Number = 0x00-0xFF not used, references current field recal

U8 View/Perform = 0x00-0xFF not used, references current field recal

U8 Get/Set = 0x00-0xFF 0x00 = Get recal state, 0x01 = Set recal state

U8 Disable/Enable = 0x00-0xFF for Get: not used
for Set: 0x00 = Disable recal, 0x01 = Enable
recal

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 34

CMD_FIELD_RECAL (0x06) (continued)

Response Format – from Module to “Controller”:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x06 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

DATA depends upon lower nibble of CMD2 as shown
next

CMD2 = xxxx0000, xxxx0001

U8 Status* = 0x00-0xFF individual status, see status page

* repeated in groups of 1 byte based the number of channels selected in CMD2
 (for xxxx0000 only; valid for zero, offset and tare)

* for EVI zero (CMD3 = 0x60), six status bytes are returned corresponding to
 modes: MEAS_V, MEAS_I, MEAS_I2, SRCE_V, SRCE_I, and SINK_I

CMD2 = xxxx0010

future

CMD2 = xxxx0011 (start field recal)

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Recal Number = 0x00-0xFF echoed

U8 View/Perform = 0x00-0xFF echoed

U8 Cur Point = 0x00-0xFF current point (x of n)

U8 Num Points = 0x00-0xFF # of points (n)

F32 Apply Point = recal value to apply

F32 Min Apply Point = min recal limit for this point

F32 Max Apply Point = max recal limit for this point

F32 Max Error = max error (|applied - actual|)

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 35

CMD2 = xxxx0100 (save point)

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Recal Number = 0x00-0xFF echoed

U8 View/Perform = 0x00-0xFF echoed

U8 Cur Point = 0x00-0xFF echoed

U8 Num Points = 0x00-0xFF echoed

F32 Apply Point = echoed or previous value if “save point” failed

F32 Min Apply Point = min recal limit for this point

F32 Max Apply Point = max recal limit for this point

F32 Max Error = max error (|applied - actual|)

CMD2 = xxxx0101 (next point)

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Recal Number = 0x00-0xFF echoed

U8 View/Perform = 0x00-0xFF echoed

U8 Cur Point = 0x00-0xFF the next point, which is now the current point

U8 Num Points = 0x00-0xFF echoed

F32 Apply Point = recal value to apply

F32 Min Apply Point = min recal limit for this point

F32 Max Apply Point = max recal limit for this point

F32 Max Error = max error (|applied - actual|)

CMD2 = xxxx0110 (finish field recal)

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Recal Number = 0x00-0xFF echoed

U8 View/Perform = 0x00-0xFF echoed

U8 Abort/Save = 0x00-0xFF echoed

U8 Disable/Enable = 0x00-0xFF the current field recal state

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 36

CMD2 = xxxx0111 (state field recal)

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Recal Number = 0x00-0xFF echoed

U8 View/Perform = 0x00-0xFF echoed

U8 Get/Set = 0x00-0xFF echoed

U8 Disable/Enable = 0x00-0xFF the current field recal state

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 37

CMD_GET_SET_RTCLOCK (0x07)

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x07

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with channel:

 xxx1 xxxx = spare

 xx1x xxxx = spare

 x1xx xxxx = spare

 1xxx xxxx = set (get = 0)

 Lower nibble not bit-encoded:

 xxxx 0000 = local time

 xxxx 0001 = coordinated universal
time (UTC)

future

U16 Year* = self-explanatory

U8 Month* = 0x01-0x0C | (1-12)

U8 Day* = 0x01-0x1F | (1-31)

U8 Hour* = 0x00-0x17 | (0-23)

U8 Minute* = 0x00-0x3B | (0-59)

U8 Second* = 0x00-0x3B | (0-59)

U8 DOW* = 0x00 0 for now

U8 Mode* = 0x02 2 for now, 0=AM, 1=PM, 2=24HR

S8 Offset* = 0x00 0 for now, eventually offset from UTC

* these parameters are not used (and need not be present) for get

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 38

Response Format – from Module to “Controller”:
LEN Length = 0x0C length of DATA area

CMD1 Command1 = 0x07 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U16 Year = self-explanatory

U8 Month = 0x01-0x0C | (1-12)

U8 Day = 0x01-0x1F | (1-31)

U8 Hour = 0x00-0x17 | (0-23)

U8 Minute = 0x00-0x3B | (0-59)

U8 Second = 0x00-0x3B | (0-59)

U8 DOW = 0x00 0 for now

U8 Mode = 0x02 2 for now, 0=AM, 1=PM, 2=24HR

S8 Offset = 0x00 0 for now, eventually offset from UTC

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 39

CMD_GET_SET_FILTER (0x08)

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x08

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with channel:

 xxx1 xxxx = channel 1

 EPI (Pressure): measure P1 pressure

 EVI (Volt Amp): meas/sim volts

 PS (M400): meas/sim HV volts

 xx1x xxxx = channel 2

 EPI (Pressure): measure P2 pressure

 EVI (Volt Amp): meas/sim milliamps

 PS (M400): meas Bus Vcc volts

 x1xx xxxx = channel 3

 ExI (that is, all): spare

 PS (M400): meas Battery percent charge

 1xxx xxxx = channel 4:

 ExI (that is, all): measure internal temperature

 Lower nibble not bit-encoded:

 xxxx 0000 = get current damp(s) for the specified
channel(s)

 xxxx 0001 = set specified damp(s) for the
specified channel(s)

U8 State* = 0x00-0xFF 0x00 = off, 0x01 = on, intended to be bit-encoded

U8 Type* = 0x00 0x00 = exponential damp, 0x01 = smart damp

F32 Value* = for type 0: desired damp in seconds

* repeated in groups of 6 bytes based upon the number of
 channels selected in CMD2 these parameters are not used (and
 need not be present) for get

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 40

Response Format – from Module to “Controller”:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x08 ehcoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status** = 0x00-0xFF general status, see status page

U8 Status** = 0x00-0xFF individual status, see status page

U8 Spare** = 0x00 spare to align on Word boundary

U8 State** = 0x00-0xFF the current filter state

U8 Type** = 0x00 the current filter type

F32 Value** = for get:

 • the current damp in seconds

 for set:

 • if specified value was valid, the specified value

 • if specified value was invalid (too low/high),
the current value is NOT changed and the
corresponding status and damp limit
(low/high) will returned

U8 Data* = 0x00-0xFF parameter specified by lower nibble of CMD2

 notes:

 • for Network address, Data = 0x01 to 0xEF
• for Module address, Data = 0x10 to 0x70
• for Baud rate index, Data = 0x00 to 0x08

o 0x00 = 19200 baud
o

** repeated in groups of 8 bytes based upon the number of
 channels selected in CMD2

Example

To …

 Controller--->EI:

 EI--->Controller:

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 41

CMD_GET_SET_COMM (0x09)

Command Format - from “Controller” to Module:
LEN Length = 0x?? length of DATA area

CMD1 Command1 = 0x09 echoed

CMD2 Command2 = 0x00-0xFF Upper nibble bit-encoded with attributes:

 xxx1 xxxx = spare

 xx1x xxxx = spare

 x1xx xxxx = spare

 1xxx xxxx = set (get = 0)

 Lower nibble not bit-encoded:

 xxxx 0000 = Network address

 xxxx 0001 = Module address

 xxxx 0010 = Baud rate index

 xxxx 1111 = Offline Mode**

U8 Data* = 0x00-0xFF parameter specified by lower nibble of CMD2

 notes:

 • for Network address, Data = 0x01 to 0xEF
• for Module address, Data = 0x10 to 0x70
• for Baud rate index, Data = 0x00 to 0x08

o 0x00 = 19200 baud
o 0x01 = 1200 baud - future
o 0x02 = 2400 baud – future
o 0x03 = 4800 baud – future
o 0x04 = 9600 baud
o 0x05 = 19200 baud
o 0x06 = 38400 baud
o 0x07 = 57600 baud
o 0x08 = 115200 baud

• for Offline Mode, Data = 0x00 to 0xFF**
o 0x00 = Go online
o 0x01-0xF0 = Go offline for x (1-240)

minutes
o 0xFF = Go offline until reset or power

cycle

* this parameter is not used (and need not be present) for get

** this command is immediate, a CMD_RESET (SOFT) will restore
 online functionality

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 42

This command is for experienced users.

A CMD_RESET (soft reboot) must be sent after completing
Network address, Module address, and Baud rate changes to make
them active.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 43

CMD_GET_SET_COMM (0x09) (continued)

Response Format – from Module to “Controller”:
LEN Length = 0x03 length of DATA area

CMD1 Command1 = 0x09 echoed

CMD2 Command2 = 0x00-0xFF echoed

STAT Status = 0x00-0xFF general status, see status page

U8 Status = 0x00-0xFF individual status, see status page

U8 Spare = 0x00 spare to align on Word boundary

U8 Data = 0x00-0xFF the current value of the parameter

Example

To …

 Controller--->EI:

 EI--->Controller:

This command is for experienced users.

A CMD_RESET (soft reboot) must be sent after completing comm.
changes to make them active.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 44

General Status

General Status (in Response Header):
[was the Command processed by the Subordinate?]

0x00 good

Miscellaneous: 0x01-0x0F
0x01 instrument busy, message discarded
0x02 message CRC invalid, message discarded
0x03 message incomplete after timeout, message discarded

Bad Header argument: 0x10-0x1F
0x10 command1 not supported or invalid
0x11 command2 not supported or invalid
0x12 command3 not supported or invalid
0x13 command1 not supported in current mode future
0x14 command2 not supported in current mode future
0x15 command3 not supported in current mode future

Bootloader-specific: 0xB0-0xBF
0xB0 command1 invalid in bootloader
0xB1 command2 invalid in bootloader
0xB2 command3 invalid in bootloader

Ramflash-specific: 0xC0-0xCF
0xC0 command1 invalid in ramflash
0xC1 command2 invalid in ramflash
0xC2 command3 invalid in ramflash

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 45

Production and/or Hardware failures: 0xF0-0xFF
0xF0 POST (power on self test) failed - general
0xF1 hardware missing/incomplete/failed
0xF2 main program not loaded, bootloader only
0xF3 memory map blank/not loaded
0xF4 memory map version/revision unsupported
0xF5 memory map class/type mismatch
0xF6 key fault detected

Always check the General Status.

• If the General Status is anything other than 0x00 (good), the
Response payload will most likely be suppressed (except for
the Extended Addressing). In the unlikely event the Payload is
present, ignore it.

• Again, if the General Status is not 0x00 (good), the Subordinate
could not process the Command.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 46

Individual Status

Individual Status (in Response Data): [is the requested data
valid?]

0x00 good

Miscellaneous: 0x01-0x0F
0x01 specified value invalid
0x02 memory/data location invalid
0x03 sensor not present or invalid
0x04 memory/data get/set failed
0x05 cmd1/2/3 not supported for this channel
0x06 payload arguments/data invalid
0x07 specified command is being processed
0x08 sensor not active in current mode
0x0F a general catch-all status

Calibration: 0x10-0x1F
0x10 cannot find cal data, primary meas too low
0x11 cannot find cal data, primary meas too high
0x12 cannot find cal data, secondary meas too low
0x13 cannot find cal data, secondary meas too high
0x14 calibration expired

Measurement: 0x20-0x2F
0x20 measurement soft under/over range
0x21 measurement hard under/over range
0x22 temperature soft under/over range
0x23 temperature hard under/over range

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 47

Simulation: 0x30-0x3F
0x30 simulation value too low
0x31 simulation value too high
0x32 simulation/output is at minimum value
0x33 simulation/output is at maximum value
0x34 simulation/output is under current (maybe open)
0x35 simulation/output is over current (maybe short)

Field Recalibration: 0x40-0x4F
0x40 field recal not allowed
0x41 too far from zero to zero
0x42 recal point outside valid range
0x43 recal point error beyond limit
0x44 general recal script error
0x45 general recal point library error
0x46 recal command out of sequence

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 48

Individual Status (in Response Data):
[is the requested data valid?]

SD Card/Data Logging: 0x50-0x5F
0x50 tbd
0x51 tbd
0x52 tbd
0x53 tbd
0x54 tbd
0x55 tbd
0x56 tbd
0x57 tbd
0x58 tbd
0x59 tbd
0x5A tbd

Power Delivery: 0x60-0x6F
0x60 no batteries installed
0x61 batteries too low for unit function
0x62 batteries nearing limit for unit function
0x63 USB power applied
0x64 sourcing function tripped (overcurrent)

Task Execution: 0x80-0x8F
0x80 specified task not supported/invalid
0x81 specified task not active
0x82 specified task active

Always check the General Status first, then check each of the
Individual Statuses.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 49

If a given Individual Status is anything other than 0x00 (good), the
corresponding Response payload data will most likely be zero. In
the unlikely event the corresponding Response payload data is not
zero, ignore it.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 50

Appendix A

Module Classes and Types
#define C_MEASUREMENT_SIMULATION 0x00 //Measurement/Simulation Class

#define T_EPI 0 //Embedded Pressure Instrument Type

#define T_EVI 1 //Embedded Volt Current Instrument Type

#define T_EIO 2 //Embedded Digital IO Instrument Type

#define T_EAO 3 //Embedded Analog Out Instrument Type

//

#define C_COMMUNICATIONS_BRIDGE 0x01 //Communications/Bridge Class

#define T_RS232_RS485 0 //RS232/RS485 Type

#define T_USB20 1 //USB2.0 Type

//

#define C_REPOSITORY_DATALOGGING 0x02 //Repository/Data logging Class

#define T_REPOSITORY 0 //Repository Type

//

#define C_CONTROL_USER_INTERFACE 0x03 //Control/User Interface Class

#define T_CONTROL_M4xx 0 //Control Type

#define T_GRAPHICS_M4xx 1 //Graphics Type

//

#define C_POWER_SUPPLY 0x04 //Power Supply Class

#define T_M4xx 0 //M4xx Type

#define T_VMA 1 //VMA Type

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 51

Module Default Addresses
#define D_BROADCAST_ADDR 0x00

#define D_WILDCARD_ADDR 0xF0

#define D_MIN_NETW_ADDR 0x01 //minimum external network
address

#define D_MAX_NETW_ADDR 0xF0 //maximum external network
address

//

#define D_MIN_I2C_ADDR 0x10 //minimum I2C address

#define D_MAX_I2C_ADDR 0x70 //maximum I2C address

#define D_MODULE_ADDR_BSL D_MAX_I2C_ADDR //module address used by BSL if

 //EE value out of above range

//

#define D_BROADCAST_ADDR 0x00 //"broadcast" address

#define D_WILDCARD_ADDR 0xF0 //"unused" address

//

// Communications/Bridge Class

#define D_MODULE_ADDR_COMM 0x28 //| same address for all

#define D_BRIDGE_ADDR_COMM D_WILDCARD_ADDR //| Types (RS232, USB, and so on)

#define D_NETWORK_ADDR_COMM D_MODULE_ADDR_COMM //| within this Class

//

// Control/User Interface Class

#define D_MODULE_ADDR_CONTROL 0x10 //Control

#define D_BRIDGE_ADDR_CONTROL D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_CONTROL D_WILDCARD_ADDR //|

//

#define D_MODULE_ADDR_GRAPHICS 0x11 //Graphics

#define D_BRIDGE_ADDR_GRAPHICS D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_GRAPHICS D_WILDCARD_ADDR //|

//

// Power Supply Class

#define D_MODULE_ADDR_POWER 0x18 //|

#define D_BRIDGE_ADDR_POWER D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_POWER D_WILDCARD_ADDR //|

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 52

//

// Repository/Data logging Class

#define D_MODULE_ADDR_REPOSITORY 0x20 //Repository

#define D_BRIDGE_ADDR_REPOSITORY D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_REPOSITORY D_WILDCARD_ADDR //|

//

// Measurement/Simulation Class

#define D_MODULE_ADDR_EPI 0x40 //Embedded Pressure Instrument

#define D_BRIDGE_ADDR_EPI D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_EPI D_WILDCARD_ADDR //|

//

#define D_MODULE_ADDR_EVI 0x41 //Embedded Volt Current Instrument

#define D_BRIDGE_ADDR_EVI D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_EVI D_WILDCARD_ADDR //|

//

#define D_MODULE_ADDR_EIO 0x42 //Embedded Digital IO Instrument

#define D_BRIDGE_ADDR_EIO D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_EIO D_WILDCARD_ADDR //|

//

#define D_MODULE_ADDR_EAO 0x43 //Embedded Analog Out Instrument

#define D_BRIDGE_ADDR_EAO D_WILDCARD_ADDR //|

#define D_NETWORK_ADDR_EAO D_WILDCARD_ADDR //|

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 53

CRC16 Detail:
Normal (that is, not reflected) CRC-16-CCITT.

A CRC16 of "123456789" returns 0x31C3.

For a 18-byte message (as shown below in Red):

1. CRC16 bytes 1-10 of the header,

2. CRC16 bytes 13-18 of the payload,

3. insert the CRC16 into bytes 11 and 12, little-endian.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 54

Message/Protocol Transmit and Receive Detail

RS232, USB20, I2C, and UART:

Steps in text:

1. Controller assembles the Command message,

2. Controller transmits the entire Command message to the EI,

3. EI processes command and assembles the Response message,

4. EI transmits the entire Response message to the Controller.

Steps in diagram:

Controller EI

1. Processing

2. Command Header + Data>>>

3. Processing

4. <<<Response Header + Data

Note: The Controller should wait >= 5mSec after receiving a
Response before issuing another Command.

9R111-B October 2017

Meriam Serial Protocol Implementation Guide Page 55

Hardware and Firmware
Communication Support

EPI (Embedded Pressure Instrument - Modular):

• EI commands: most

• General Interface: SPI, UART, I2C

• Production Interface: I2C

• TU1 = at 19,200-115,200 baud, at 8MHz, no pause necessary

• TS1 = TBD

o the Master must wait >= 5 mSec (from completion of
Subordinate response) before issuing another command
(actually, this time may be as low as >= 1 mSec – try at
own risk)

Note: SPI/UART autodetect TBD, UART autobaud detect TBD

EVI (Embedded Volt Current Instrument - Modular):

• EI commands: most

• General Interface: SPI, UART, I2C

• Production Interface: I2C

• TU1 = TBD

• TS1 = TBD

Note: SPI/UART autodetect TBD, UART autobaud detect TBD

RS232485 and USB Comm. (Modular):

• EI commands: 0x00, 0x02-0x04, 0x60-0x62

• General Interface: Specific to type of comm. module

• Production Interface: I2C

• TU1 = n/a

• TS1 = n/a

	For M1500 Digital Transmitters
	Preface
	Modular Configurations
	Overview
	Message Structure
	Communication Protocol

	Terminology
	Command Format - from “Controller” to Module
	Header
	Data (Payload)
	Data types used to describe the DATA (or Payload) part of the message:
	Response Format – from Module to “Controller”

	CMD_RESET (0x00)
	Command Format - from “Controller” to Module:
	Response Format – from Module to “Controller”:

	CMD_GET_SET_INFO (0x02) – constantly adding new CMD3s
	Command Format - from “Controller” to Module:
	Response Format – from Module to “Controller”:
	Types of information

	CMD_GET_SET_UNITS (0x03)
	Command Format - from “Controller” to Module:
	CMD_GET_SET_UNITS (0x03) (continued)
	EPI Pressure Channel Units:

	CMD_GET_MEAS (0x04)
	Command Format - from “Controller” to Module:
	CMD_GET_MEAS (0x04) (continued)

	CMD_MEAS_SIM_MODE (0x05)
	Command Format - from “Controller” to Module:
	Response Format – from Module to “Controller”:
	Measure/Simulation Modes by Module:

	CMD_FIELD_RECAL (0x06)
	Command Format - from “Controller” to Module:
	CMD_FIELD_RECAL (0x06) (continued)

	CMD_GET_SET_RTCLOCK (0x07)
	Command Format - from “Controller” to Module:
	Response Format – from Module to “Controller”:

	CMD_GET_SET_FILTER (0x08)
	Command Format - from “Controller” to Module:
	Response Format – from Module to “Controller”:

	CMD_GET_SET_COMM (0x09)
	Command Format - from “Controller” to Module:
	CMD_GET_SET_COMM (0x09) (continued)

	General Status
	General Status (in Response Header):

	Individual Status
	Individual Status (in Response Data): [is the requested data valid?]
	Individual Status (in Response Data):

	Appendix A
	Module Classes and Types
	Module Default Addresses
	CRC16 Detail:
	Message/Protocol Transmit and Receive Detail
	RS232, USB20, I2C, and UART:

	Hardware and Firmware Communication Support
	EPI (Embedded Pressure Instrument - Modular):
	EVI (Embedded Volt Current Instrument - Modular):
	RS232485 and USB Comm. (Modular):

